A Method for DMUs Classification in DEA

نویسندگان

  • R. Shahverdi,
چکیده مقاله:

In data envelopment analysis, anyone can do classification decision units with efficiency scores. It will be interesting if a method for classification of DMUs without regarding to efficiency score is obtained. So in this paper, the classification of Decision Making Units (DMUs) is done according to the additive model without being solved for obtaining scores efficiency. This is because it is known that the additive model is the simplest non-radial model in DEA. In fact, the classification of DMUs to a set of efficient, weak efficient, and inefficient units, based upon feasibility concept is done here. Especially, the models and theorems for this aim are presented. Keywords: Data Envelopment Analysis, Classification, Decision Making Units.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Non-Archimedean DEA Models for Classification of DMUs: A New Algorithm

A new algorithm for classification of DMUs to efficient and inefficient units in data envelopment analysis is presented. This algorithm uses the non-Archimedean Charnes-Cooper-Rhodes[1] (CCR) model. Also, it applies an assurance value for the non-Archimedean                          using only simple computations on inputs and outputs of DMUs (see [18]). The convergence and efficiency of the ne...

متن کامل

A DEA with Categorical DMUs Based Model in Profit Sharing

Submitted: Jun 12, 2013; Accepted: Jul 23, 2013; Published: Jul 25, 2013 Abstract: Companies around the world normally assign a portion of their benefits to their employees. This policy is used as an encouragement to increase the motivation of employees. If the profit sharing seems unfair, its expected results will be lost. In this paper, a model is developed to determine a desirable profit sha...

متن کامل

DEA models for non-homogeneous DMUs with different input configurations

The data envelopment analysis (DEA) methodology is a benchmarking tool where it is generally assumed that decision making units (DMUs) constitute a homogeneous set; specifically, it is assumed that all DMUs have a common (input, output) bundle. In earlier work by the authors the issue of non-homogeneity on the output side was investigated. There we examined a set of steel fabrication plants whe...

متن کامل

A two-stage model for ranking DMUs using DEA/‎AHP‎

‎In this paper, we present a two-stage model for ranking of decision making units (DMUs) using interval analytic hierarchy process (AHP). Since the efficiency score of unity is assigned to the efficient units, we evaluate the efficiency of each DMU by basic DEA models and calculate the weights of the criteria using proposed model. In the first stage, the proposed model evaluates decision making...

متن کامل

Using DEA for Classification in Credit Scoring

Credit scoring is a kind of binary classification problem that contains important information for manager to make a decision in particularly in banking authorities. Obtained scores provide a practical credit decision for a loan officer to classify clients to reject or accept for payment loan. For this sake, in this paper a data envelopment analysis- discriminant analysis (DEA-DA) approach is us...

متن کامل

Stability of RTS of Efficient DMUs in DEA with Fuzzy

An important property of production functions is the concept return to scale (RTS) as found in the literature. There are two common variations RTS in data envelopment analysis (DEA) used, constant return to scale (CRS) and variation return to scale (VRS). The envelopment surface in BCC model is VRS and this is the result of the presence of the convexity constraint in the dual model and, equival...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 1  شماره None

صفحات  0- 0

تاریخ انتشار 2011-11

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

کلمات کلیدی

کلمات کلیدی برای این مقاله ارائه نشده است

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023